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AZOBENZENE POLYMERS FOR

PHOTONIC APPLICATIONS
Kevin G. Yager and Christopher J. Barrett

1.1. INTRODUCTION TO AZOBENZENE

Azobenzene, with two phenyl rings separated by an azo (–N=N–) bond, serves as
the parent molecule for a broad class of aromatic azo compounds. These
chromophores are versatile molecules, and have received much attention in
research areas both fundamental and applied. The strong electronic absorption
maximum can be tailored by ring substitution to fall anywhere from the ultraviolet
(UV) to visible red regions, allowing chemical fine-tuning of color. This, combined
with the fact that these azo groups are relatively robust and chemically stable, has
prompted extensive study of azobenzene-based structures as dyes and colorants.
The rigid mesogenic shape of the molecule is well suited to spontaneous
organization into liquid crystalline (LC) phases, and hence polymers doped or
functionalized with azobenzene-based chromophores (azo polymers) are common
as LC media. With appropriate electron-donor–acceptor ring substitution, the
p electron delocalization of the extended aromatic structure can yield high optical
nonlinearity, and zo chromophores have seen extensive study for nonlinear optical
applications as well. One of the most interesting properties of these chromophores
however, and the main subject of this review, is the readily induced and reversible
isomerization about the azo bond between the trans and cis geometric isomers and
the geometric changes that result when azo chromophores are incorporated into
polymers and other materials. This light-induced interconversion allows systems
incorporating azobenzenes to be used as photoswitches, effecting rapid and
reversible control over a variety of chemical, mechanical, electronic, and optical
properties.
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Perhaps of a range as wide as the interesting phenomena displayed by azo
aromatic compounds is the variety of molecular systems into which these
chromophores can be incorporated. In addition to LC media and amorphous
glasses, azobenzenes can be incorporated into self-assembled monolayers and
superlattices, sol–gel silica glasses, and various biomaterials. The photochromic or
photoswitchable nature of azobenzenes can also be used to control the properties
of novel small molecules, using an attached aromatic azo group. A review will be
presented here of the photochemical and photophysical nature of chromophores
in host polymers, the geometric and orientational consequences of this isomeriza-
tion, and some of the interesting ways in which these phenomena have been
expolited recently to exert control over solution and biochemical properties using
light. This photoisomerization can be exploited as a photoswitch to orient the
chromophore (which induces birefringence), or even to perform all-optical surface
topography patterning. These photomotions enable many interesting applications,
ranging from optical components and lithography to sensors and smart materials.

1.1.1. Azobenzene Chromophores

In this text, as in most on the subject, we use ‘‘azobenzene’’ and ‘‘azo’’ in a general
way: to refer to the class of compounds that exhibit the core azobenzene structure,
with different ring substitution patterns (even though, strictly, these compounds
should be referred to as ‘‘diazenes’’). There are many properties common to nearly
all azobenzene molecules. The most obvious is the strong electronic absorption of
the conjugated p system. The absorption spectrum can be tailored, via the ring
substitution pattern, to lie anywhere from the UV to the visible red region. It is not
surprising that azobenzenes were originally used as dyes and colorants, and up to
70% of the world’s commercial dyes are still azobenzene-based (Zollinger, 1987,
1961). The geometrically rigid structure and large aspect ratio of azobenzene
molecules make them ideal mesogens: azobenzene small molecules and polymers
functionalized with azobenzene can exhibit LC phases (Möhlmann and van der
Vorst, 1989; Kwolek et al., 1985). The most startling and intriguing characteristic of
the azobenzenes is their highly efficient and fully reversible photoisomerization.
Azobenzenes have two stable isomeric states, a thermally stable trans configuration
and a metastable cis form. Remarkably, the azo chromophore can interconvert
between these isomers upon absorption of a photon. For most azobenzenes, the
molecule can be optically isomerized from trans to cis with light anywhere within the
broad absorption band, and the molecule will subsequently thermally relax back to
the trans state on a timescale dictated by the substitution pattern. This clean
photochemistry is central to azobenzene’s potential use as a tool for nanopatterning.

Azobenzenes can be separated into three spectroscopic classes, well described
by Rau (1990): azobenzene-type molecules, aminoazobenzene-type molecules,
and pseudo-stilbenes (refer to Fig. 1.1 for examples). The particulars of their
absorption spectra (shown in Fig. 1.2) give rise to their prominent colors: yellow,
orange, and red, respectively. Many azos exhibit absorption characteristics
similar to the unsubstituted azobenzene archetype. These molecules exhibit
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a low intensity n-p* band in the visible region and a much stronger p-p* band
in the UV. Although the n-p* is symmetry-forbidden for trans-azobenzene (C2h),
vibrational coupling and some extent of nonplanarity nevertheless make it
observable (Rau, 1968).
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Figure 1.1. Examples of azomolecules classified as (a) azobenzenes, (b) amino-

azobenzenes, and (c) pseudo-stilbenes.
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Figure 1.2. Schematic of typical absorbance spectra for trans-azobenzenes. The

azobenzene-type molecules (solid line) have a strong absorption in the UV, and a

low intensity band in the visible (barely visible in the graph). The aminoazo-

benzenes (dotted line) and pseudo-stilbenes (dashed line) typically have strong

overlapped absorptions in the visible region.
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Adding substituents to the azobenzene rings may lead to minor or major
changes in spectroscopic character. Of particular interest is ortho- or para-
substitution with an electron-donating group (usually an amino, –NH2), which
results in a new class of compounds. In these aminoazobenzenes, the n-p* and
p-p* bands are much closer. In fact, the n-p* may be completely buried beneath
the intense p-p*. Although azobenzenes are fairly insensitive to solvent polarity,
aminoazobenzene absorption bands shift to higher energy in nonpolar solvents and
shift to lower energy in polar solvents. Substituting azobenzene at the 4 and 4u
positions with an electron-donor and an electron-acceptor (such as an amino and a
nitro, –NO2, group) leads to a strongly asymmetric electron distribution (often
referred to as a ‘‘push–pull’’ substitution pattern). This shifts the p-p* absorption
to lower energy, toward the red and past the n-p*. This reversed ordering of
the absorption bands defines the third spectroscopic class, the pseudo-stilbenes
(in analogy to stilbene, phenyl–C=C–phenyl). The pseudo-stilbenes are very
sensitive to local environment, which can be useful in some applications.

Especially in condensed phases, the azos are also sensitive to packing and
aggregation. The p–p stacking gives rise to shifts of the absorption spectrum. If the
azo dipoles have a parallel (head-to-head) alignment, they are called J-aggregates,
and give rise to a redshift of the spectrum (bathochromic) as compared with the
isolated chromophore. If the dipoles are antiparallel (head-to-tail), they are called
H-aggregates and lead to a blueshift (hypsochromic). Fluorescence is seen in some
aminoazobenzenes and many pseudo-stilbenes but not in azobenzenes, whereas
phosphorescence is absent in all the three classes. By altering the electron density,
the substitution pattern necessarily affects the dipole moment, and in fact all the
higher order multipole moments. This becomes significant in many nonlinear
optical (NLO) studies. For instance, the chromophore’s dipole moment can be
used to orient with an applied electric field (poling), and the higher order moments
of course define the molecule’s nonlinear response (Delaire and Nakatani, 2000).
In particular, the strongly asymmetric distribution of the delocalized electrons
that results from push–pull substitution results in an excellent NLO chromophore.

1.1.2. Azobenzene Photochemistry

Key to some of the most intriguing results and interesting applications of
azobenzenes is the facile and reversible photoisomerization about the azo bond,
converting between the trans (E ) and cis (Z) geometric isomers (Fig. 1.3). This
photoisomerization is completely reversible and free from side reactions, prompt-
ing Rau to characterize it as ‘‘one of the cleanest photoreactions known.’’(Rau,
1990) The trans isomer is more stable by B50 kJmol�1 (Mita et al., 1989; Schulze
et al., 1977), and the energy barrier to the photoexcited state (barrier to
isomerization) is on the order of 200 kJmol�1 (Monti et al., 1982). Thus, in the
dark, most azobenzene molecules will be found in the trans form. On absorption
of a photon (with a wavelength in the trans absorption band), the azobenzene
will convert, with high efficiency, into the cis isomer. A second wavelength of
light (corresponding to the cis absorption band) can cause the back-conversion.
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These sphotoisomerizations usually have picosecond timescales (Lednev et al.,
1996; Kobayashi et al., 1979). Alternately, azos will thermally reconvert from the
cis into trans state, with a timescale ranging from milliseconds to hours, depending
on the substitution pattern and local environment. More specifically, the lifetimes
for azobenzenes, aminoazobenzenes, and pseudo-stilbenes are usually on the
order of hours, minutes, and seconds, respectively. The energy barrier for thermal
isomerization is on the order of 90 kJmol�1 (Brown and Granneman, 1975;
Haberfield et al., 1975). Considerable work has gone into elongating the cis
lifetime, with the goal of creating truly bistable photoswitchable systems. Bulky
ring substituents can be used to hinder the thermal back reaction. For instance, a
polyurethane main-chain azo exhibited a lifetime of 4 days (thermal rate constant
of k=2.8� 10�6 s�1, at 31C) (Lamarre and Sung, 1983), and an azobenzene
parasubstituted with bulky pendants had a lifetime of 60 days (ko2� 10�7 s�1, at
room temperature) (Shirota et al., 1998). The conformational strain of macrocylic
azo compounds can also be used to lock the cis state, where lifetimes of
20 days (k=5.9� 10�7 s�1) (Norikane et al., 2003), 1 year (half-life 400 days,
k=2� 10�8 s�1) (Rottger and Rau, 1996; Rau and Roettger, 1994), or even
6 years (k=4.9� 10�9 s�1) (Nagamani et al., 2005) were observed. Similarly, using
the hydrogen bonding of a peptide segment to generate a cyclic structure, a cis
lifetime of B40 days (k=2.9� 10�7 s�1) was demonstrated (Vollmer et al., 1999).
Of course, one can also generate a system that starts in the cis state and where
isomerization (in either direction) is completely hindered. For instance, attach-
ment to a surface (Kerzhner et al., 1983), direct synthesis of ringlike azo molecules
(Funke and Gruetzmacher, 1987), and crystallization of the cis form (Hartley,
1938, 1937) can be used to maintain one state, but such systems are obviously not
bistable photoswitches.

A bulk azo sample or solution under illumination will achieve a photosta-
tionary state, with a steady-state trans–cis composition based on the competing
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Figure 1.3. (a) Azobenzene can convert between trans and cis states photoche-

mically and relaxes to the more stable trans state thermally. (b) Simplified state

model for azobenzenes. The trans and cis extinction coefficients are denoted by

etrans and ecis. The F refer to quantum yields of photoisomerization, and g is the

thermal relaxation rate constant.
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effects of photoisomerization into the cis state, thermal relaxation back to the
trans state, and possibly cis reconversion upon light absorption. The steady-state
composition is unique to each system, as it depends on the quantum yields for
the two processes (Ftrans and Fcis) and the thermal relaxation rate constant.
The composition also depends on irradiation intensity, wavelength, temperature,
and the matrix (gas phase, solution, liquid crystal, sol–gel, monolayer, polymer
matrix, etc.). Azos are photochromic (their color changes on illumination), since
the effective absorption spectrum (a combination of the trans and cis spectra)
changes with light intensity. Thus absorption spectroscopy can be conveniently
used to measure the cis fraction in the steady state (Rau et al., 1990; Fischer,
1967), and the subsequent thermal relaxation to an all-trans state (Beltrame et al.,
1993; Hair et al., 1990; Eisenbach, 1980a; Gabor and Fischer, 1971). Nuclear
magnetic resonance (NMR) spectroscopy can also be used (Magennis et al., 2005).
Under moderate irradiation, the composition of the photostationary state is
predominantly cis for azobenzenes, mixed for aminoazobenzenes, and predomi-
nantly trans for pseudo-stilbenes. In the dark, the cis fraction is below most
detection limits, and the sample can be considered to be in an all-trans state.
Isomerization is induced by irradiating with a wavelength within the azo’s
absorption spectrum, preferably close to lmax. Modern experiments typically
use laser excitation with polarization control, delivering on the order of
1–100mWcm�2 of power to the sample. Various lasers cover the spectral range
of interest, from the UV (Ar+ line at 350 nm) through blue (Ar+ at 488 nm), green
(Ar+ at 514 nm, YAG at 532 nm, HeNe at 545 nm), and into the red (HeNe at
633 nm, GaAs at 675 nm).

The ring substitution pattern affects both the trans and the cis absorption
spectra, and for certain patterns, the absorption spectra of the two isomers overlap
significantly (notably for the pseudo-stilbenes). In these cases, a single wavelength
of light effectuates both the forward and reverse reaction, leading to a mixed
stationary state and continual interconversion of the molecules. For some
interesting azobenzene photomotions, this rapid and efficient cycling of chromo-
phores is advantageous, whereas in cases where the azo chromophore is used as a
switch, it is clearly undesirable.

The mechanism of isomerization has undergone considerable debate. Isomer-
ization takes place either through a rotation about the N–N bond, with rupture of
the p bond, or through inversion, with a semilinear and hybrizidized transition
state, where the p bond remains intact (refer to Fig. 1.4). The thermal back-
relaxation is agreed to be via rotation, whereas for the photochemical isomeriza-
tion, both mechanisms appear viable (Xie et al., 1993). Historically, the rotation
mechanism (as necessarily occurs in stilbene) was favored for photoisomerization,
with some early hints that inversion may be contributing (Gegiou et al., 1968).
More recent experiments, based on matrix or molecular constraints to the
azobenzene isomerization, strongly support inversion (Altomare et al., 1997;
Liu et al., 1992; Naito et al., 1991; Rau and Lueddecke, 1982). Studies using
picosecond Raman and femtosecond fluorescence show a double bond (N=N) in
the excited state, confirming the inversion mechanism (Fujino et al., 2001; Fujino
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and Tahara, 2000). In contrast, Ho et al. (2001) found evidence that the pathway is
compound-specific: a nitro-substituted azobenzene photoisomerized via the rota-
tion pathway. Furthermore, ab initio and density functional theory calculations
indicate that both pathways are energetically accessible, although inversion is
preferred (Angeli et al., 1996; Jursic, 1996). Thus, both mechanisms may be
competing, with a different one dominating depending on the particular chromo-
phore and environment. The emerging consensus nevertheless appears to be that
inversion is the dominant pathway for most azobenzenes (Ikeda and Tsutsumi,
1995). The availability of the inversion mechanism explains how azos are able to
isomerize easily even in rigid matrices, such as glassy polymers, since the inversion
mechanism has a much smaller free volume requirement than rotation.

The thermal back-relaxation is generally first order, although a glassy
polymer matrix can lead to anomalously fast decay components (Barrett et al.,
1995, 1994; Paik and Morawetz, 1972; Priest and Sifain, 1971), attributed to a
distribution of chromophores in highly strained configurations. Higher matrix
crystallinity increases the rate of decay (Sarkar et al., 2001). The decay rate can act
as a probe of local environment and molecular conformation (Tanaka et al., 2004;
Norman and Barrett, 2002). The back-relaxation of azobenzene is acid catalyzed
(Rau et al., 1981), although strongly acidic conditions will lead to side reactions
(Hartley, 1938). For the parent azobenzene molecule, quantum yields (which can
be indirectly measured spectroscopically (Shen and Rau, 1991; Priest and Sifain,
1971; Malkin and Fischer, 1962) are on the order of 0.6 for the trans-cis
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Figure 1.4. The mechanism of azobenzene isomerization proceeds either via

rotation or inversion. The cis state has the phenyl rings tilted at 901 with respect

to the CNNC plane.
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photoconversion, and 0.25 for the back photoreaction. Solvent has a small effect,
increasing the trans-cis and decreasing the cis-trans yield as polarity increases
(Bortolus and Monti, 1979). Aminoazobenzenes and pseudo-stilbenes isomerize
very quickly and can have quantum yields as high as 0.7–0.8.

1.1.3. Classes of Azobenzene Systems

Azobenzenes are robust and versatile moieties, and have been extensively
investigated as small molecules, pendants on other molecular structures, or
incorporated (doped or covalently bound) into a wide variety of amorphous,
crystalline, or LC polymeric systems. Noteworthy examples include self-assembled
monolayers and superlattices (Yitzchaik and Marks, 1996), sol–gel silica glasses
(Levy and Esquivias, 1995), and biomaterials (Gallot et al., 1996; Willner and
Rubin, 1996; Sisido et al., 1991a). A number of small molecules incorporating
azobenzene have been synthesized, including crown ethers (Shinkai et al., 1983),
cyclodextrins (Jung et al., 1996; Yamamura et al., 1996), proteins such as
bacteriorhodopsin (Singh et al., 1996), and three-dimensional (3-D) polycyclics
such as cubane (Chen et al., 1997b) and adamantane (Chen et al., 1995). Typically,
azo chromophores are embedded in a solid matrix for studies and devices. As a
result, matrix effects are inescapable: the behavior of the chromophore is altered
due to the matrix, and in turn, the chromophore alters the matrix (Ichimura,
2000). Although either could be viewed as a nuisance, both are in fact useful: the
chromophore can be used as a probe of the matrix (free volume, polarizability,
mobility, etc.), and when the matrix couples to chromophore motion, molecular
motions can be translated to larger length scales. Thus, the incorporation strategy
is critical to exploiting azobenzene’s unique behavior.

1.1.3.1. Amorphous Polymer Thin Films. Doping azobenzenes into poly-
mer matrices is a convenient inclusion technique (Birabassov et al., 1998;
Labarthet et al., 1998). These ‘‘guest–host’’ systems can be cast or spin-coated
from solution mixtures of polymer and azo small molecules, where the azo content
in the thin film is easily adjusted via concentration. Although doping leaves the
azo chromophores free to undergo photoinduced motion unhindered, it has been
found that many interesting photomechanical effects do not couple to the matrix
in these systems. Furthermore, the azo mobility often leads to instabilities, such as
phase separation or microcrystallization. Thus, one of the most attractive
methodologies for incorporating azobenzene into functional materials is by
covalent attachment to polymers. The resulting materials benefit from the inherent
stability, rigidity, and processability of polymers, in addition to the unusual
photoresponsive behavior of the azo moieties. Both side-chain and main-chain
azobenzene polymers have been prepared (Viswanathan et al., 1999) (Fig. 1.5).
Reported synthetic strategies involve either polymerizing azobenzene-functiona-
lized monomers (Ho et al., 1996; Natansohn et al., 1992) or postfunctionalizing
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a polymer that has an appropriate pendant group (usually a phenyl) (Wang et al.,
1997a,b,c). The first method is preferred for its simplicity and control of sequence
distribution. The second takes advantage of commonly available starting materi-
als, but may require more reaction steps. Many different backbones have been
used as scaffolds for azo moieties, including imides (Agolini and Gay, 1970), esters
(Anderle et al., 1989), urethanes (Furukawa et al., 1967), ethers (Bignozzi et al.,
1999), organometallic ferrocene polymers (Liu et al., 1997), dendrimers (Junge
and McGrath, 1997; Mekelburger et al., 1993), and even conjugated polydiace-
tylenes (Sukwattanasinitt et al., 1998), polyacetylenes (Teraguchi and Masuda,
2000), and main-chain azobenzenes (Izumi et al., 2000a,b). The most common azo
polymers are acrylates (Morino et al., 1998), methacrylates (Altomare et al., 2001),
and isocyanates (Tsutsumi et al., 1996). Thin films are usually prepared by spin-
coating (Han and Ichimura, 2001; Blinov et al., 1998; Weh et al., 1998; Ichimura
et al., 1996), although there are also many examples of using solvent evaporation,
the Langmuir–Blodgett technique (Silva et al., 2002; Razna et al., 1999; Jianhua
et al., 1998; Seki et al., 1993), and self-assembled monolayers (Evans et al., 1998).
Spin-cast films are typically annealed above the polymer glass transition tempera-
ture (Tg) to remove residual solvent and erase any hydrodynamically induced
anisotropy. Recently molecular glasses have been investigated as alternatives to
amorphous polymer systems (Mallia and Tamaoki, 2003). These monodisperse
systems appear to maintain the desirable photomotions and photoswitching
properties, while allowing precise control of molecular architecture and thus
material properties (Naito and Miura, 1993).
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Figure 1.5. Examples of azo polymer structures, showing that both (a) side-chain

and (b) main-chain architectures are possible.
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1.1.3.2. Liquid Crystals. Azobenzenes are anisotropic, rigid molecules and
as such are ideal candidates to act as mesogens: molecules that form LC
mesophases. Many examples of small-molecule azobenzene liquid crystals have
been studied. Some azo polymers also form LC phases (refer to Fig. 1.6 for a
typical structure). For side-chain azobenzenes, a certain amount of mobility is
required for LC phases to be present; as a rule, if the tether between the
chromophore and the backbone is less than 6 alkyl units long, the polymer will
exhibit an amorphous and isotropic solid-state phase, whereas if the spacer is
longer, LC phases typically form. The photoisomerization of azobenzene leads to
modification of the phase and alignment (director) in LC systems (Shibaev et al.,
2003; Ichimura, 2000). The director of a liquid crystal phase can be modified by
orienting chromophores doped into the phase (Sun et al., 1992; Anderle et al.,
1991) by using an azobenzene-modified ‘‘command surface’’ (Chen and Brady,
1993; Ichimura et al., 1993; Gibbons et al., 1991), using azo copolymers (Wiesner
et al., 1991), and, of course, in pure azobenzene LC phases (Hvilsted et al., 1995;
Stumpe et al., 1991). One can force the LC phase to adopt an in-plane order
(director parallel to surface), homeotropic alignment (director perpendicular to
surface), tilted or even biaxial orientation (Yaroschuk et al., 2001). These changes
are fast and reversible. Although the trans-azobenzenes are excellent mesogens,
the cis-azos typically are not. If even a small number of azomolecules are
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Figure 1.6. A typical liquid-crystalline side-chain azobenzene polymer.
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distributed in an LC phase, trans-cis isomerization can destabilize the phase
by lowering the nematic-to-isotropic phase transition temperature (Eich and
Wendorff, 1990). This enables fast isothermal photocontrol of phase transitions
(Kato et al., 1996; Hayashi et al., 1995; Ikeda and Tsutsumi, 1995; Ikeda et al.,
1990). Since these modulations are photoinitiated, it is straightforward to create
patterns (Shannon et al., 1994). These LC photoswitching effects are obviously
attractive in many applications, such as for display devices, optical memories
(Gibbons et al., 1991), electro-optics (Luk and Abbott, 2003), and modulating the
polarization of ferroelectric liquid crystals (Fischer et al., 1997; Ikeda et al., 1993).

1.1.3.3. Dendrimers. Dendrimers have been investigated as unique struc-
tures to exploit and harness azobenzene’s photochemistry (Momotake and Arai,
2004a,b; Villavicencio and McGrath, 2002). Dendritic and branched molecular
architectures can have better solubility properties and can be used to control
undesired aggregation, resulting in higher quality films for optical applications
(Campbell et al., 2006; Ma et al., 2002). Dendrimers with strongly absorbing
pendants can act as antenna, harvesting light and making it available, via
intramolecular energy transfer, to the dendrimer core. In dendrimers with azo
cores, this allows for the activation of isomerization using a wavelength outside of
the azo-absorption band (since the dendrimer arms absorb and transfer energy to
the core) (Aida et al., 1998; Jiang and Aida, 1997). Furthermore, the configura-
tional change that results from the core isomerization will translate into a larger
scale geometric change. For instance, in a dendrimer with three azobenzene arms
(Fig. 1.7), the various isomerization combinations (EEE, EEZ, EZZ, and ZZZ)
could all be separated by thin-layer chromatography because of their different
physical properties (Junge and McGrath, 1999). The conformational change
associated with isomerization modifies (typically reduces) the hydrodynamic
volume, with the specific extent of conformational change depending strongly
on where the azo units are incorporated (Li and McGrath, 2000).

1.1.3.4. Polyelectrolyte Multilayers. A new facile and versatile film pre-
paration technique, layer-by-layer electrostatic self-assembly, has become the
subject of intensive research since its introduction by Decher (Decher, 1997;
Decher and Schmitt, 1992; Decher and Hong, 1991; Decher et al., 1991). In this
technique, a charged or hydrophilic substrate is immersed in a solution of charged
polymers (polyelectrolytes), which adsorb irreversibly onto the substrate. After
rinsing, the substrate is then immersed in a solution containing a polyelectrolyte of
opposite charge, which adsorbs electrostatically to the charged polymer mono-
layer. Because each layer of adsorbed polymer reverses the surface charge, one can
build up an arbitrary number of alternating polycation–polyanion layers. These
polyelectrolyte multilayers (PEMs) are easy to prepare, use benign (all-aqueous)
chemistry, and are inherently tunable (Decher et al., 1998; Hammond, 1999;
Knoll, 1996). Specifically, by adjusting the ionic strength (Steitz et al., 2000;
Linford et al., 1998; Lösche et al., 1998; Sukhorukov et al., 1996) or pH (Burke
and Barrett, 2003a; Chung and Rubner, 2002; Wang et al., 2002; Shiratori and
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Rubner, 2000) (in the case of ‘‘weak’’ polyelectrolytes) of the assembly solution,
the polyelectrolyte chain conformation is modified, and hence the resulting film
architecture is tuned. For instance, one can control thickness (Lösche et al., 1998;
Dubas and Schlenoff, 1999), permeability (Rmaile and Schlenoff, 2003), morphol-
ogy (Antipov et al., 2003; McAloney et al., 2003; Mendelsohn et al., 2000), and
density (Dragan et al., 2003). Recently the technique has been modified to
assemble the alternate layers using a spin-coater, which reduces the assembly
times and adsorption solution volumes considerably (Chiarelli et al., 2001; Cho
et al., 2001; Lee et al., 2003, 2001).

As a film preparation technique, this method has numerous advantages. The
adsorption of the polymers is quasithermodynamic, with the chains adsorbing into
a local minimum, which makes the films stable against many defects (dewetting,
pinhole formation, etc.). Importantly, the technique is not limited to flat surfaces:
any geometry that can be immersed in solution (or have solution flowed through)
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Figure 1.7. An azobenzene dendrimer containing three azo moieties. Each
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is suitable. Colloids have been efficiently coated with PEMs (Caruso, 2001;
Sukhorukov et al., 1998b), and by dissolving the core one can also form hollow
PEM microcapsules (Sukhorukov et al., 1998a). Multilayers can be formed on
nearly any material (glass, quartz, silicon, most metals, etc.) and are robust against
thermal and solvent treatment (Mermut and Barrett, 2001). One of the main
interests in PEMs is due to their inherent biocompatibility (Richert et al., 2002):
multilayers have been formed on enzyme microcrystals (Jin et al., 2001), used to
encapsulate living cells (Diaspro et al., 2002) and coat arterial walls (Thierry et al.,
2003). Perhaps the most useful feature of the multilayering technique is its ability
to incorporate secondary functional groups into the thin film structure. The
location of these functional units (which may be small molecules, pendants on the
polyelectrolyte chains, or particles) within the multilayer stack can be controlled
with subnanometer precision. A wide variety of functionalities have been demon-
strated, including organic molecules (He et al., 2000a), synthetic polymers
(Balasubramanian et al., 1998), biopolymers (Burke and Barrett, 2003b), natural
proteins (Caruso and Möhwald, 1999), colloids (Lvov et al., 1997), inorganic
nanoparticles (Kotov et al., 1995), clay platelets (Kleinfeld and Ferguson, 1994)
(used as a nacre biomimic [Tang et al., 2003]), dendrimers (Watanabe and
Regen, 1994), electrochemically active species (Knoll, 1996), functionalized C60

(Mattoussi et al., 2000), and even, counterintuitively, uncharged and nonpolar
polymer chains (Rouse and Ferguson, 2002).

Many research groups have investigated the possibility of incorporating
optically responsive azobenzene chromophores into the versatile PEM
structures (examples presented in Fig. 1.8), including Advincula (Advincula
et al., 2001, 2003; Advincula, 2002; Ishikawa et al., 2002), Kumar and Tripathy
(Lee et al., 2000; Balasubramanian et al., 1998), Tieke (Ziegler et al., 2002;
Toutianoush et al., 1999; Toutianoush and Tieke, 1998; ; Saremi and Tieke, 1998),
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Figure 1.8. Examples of water-soluble azo polyelectrolytes, which can be used in

the preparation of photoactive polyelectrolyte multilayers.
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Heflin (Van Cott et al., 2002), and Barrett (Mermut and Barrett, 2003; Mermut
et al., 2003). In some cases, copolymers are synthesized, where some of the repeat
units are charged groups and some are azo chromophores (Suzuki et al., 2003; Wu
et al., 2001a). These materials may, however, have solubility issues, as the azo
chromophore is typically not water-soluble. Efforts have therefore gone into
synthesizing azo ionomers (Jung et al., 2002; Hong et al., 2000), or polymers where
the charge appears on the azobenzene unit (Wang et al., 1998, 2004; Wu et al.,
2001a). The azobenzene chromophore may also be created by postfunctionaliza-
tion of an assembled PEM (Lee et al., 2000). Azobenzene-functionalized PEMs
have demonstrated all of the unique photophysics associated with the chromo-
phore, including induced birefringence (Ishikawa et al., 2002; Park and Advincula,
2002) and surface mass transport (Wang et al., 1998) (which is described in more
detail in Section 1.3). It should be noted, however, that in general the quality of
the patterning is lower (Wang et al., 2004), presumably because of the constraints
to chain motion that the ionic ‘‘cross-links’’ engender. There are many examples of
performing the multilayering with a polyelectrolyte and a small molecule azo-
benzene ionic dye (Dragan et al., 2003). In contrast to conventional doped
systems, the chromophores in these systems do not suffer from aggregation
instabilities (Advincula et al., 2001), and the azo photomotions do couple to the
matrix, as evidenced by birefringence (dos Santos Jr. et al., 2003; Bian et al., 2000)
and surface patterning (He et al., 2000a,b). These effects can again be attributed
to the fact that the ionic attachment points act as cross-links in a dry PEM
sample. The aggregation and photochemical behavior of the azo chromophore
(absorbance spectrum, isomerization rate, etc.) vary depending on the nature of
the counterpolymer (Dante et al., 1999) (and of course, is affected by any ionic
ring substituent). These may be viewed as undesirable matrix effects, or as a
way to tune the chromophore response. The multilayering technique does not
offer the precision and reproducibility of conventional inorganic film preparation
techniques. It is, however, simple, versatile, and offers the possibility of combining
unique structures and functionalities (for instance, it has been used to create
superhydrophobic surfaces [Zhai et al., 2004], to make azo photochromic hollow
shells [Jung et al., 2002], and is amenable to patterning [Nyamjav and Ivanisevic,
2004]). Although it is unlikely to replace established techniques for high perfor-
mance devices, it may find applications in certain niches (coatings, disposable
electronics, biomedical devices, etc.).

1.2. PHOTOINDUCED MOTIONS AND MODULATIONS

Irradiation with light produces molecular changes in azobenzenes, and under
appropriate conditions, these changes can translate into larger scale motions
and even modulation of material properties. Following Natansohn and
Rochon (2002), we will describe motions roughly in order of increasing size scale.
However, since the motion on any size scale invariably affects (and is affected by)
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other scales, clear divisions are not possible. In all cases, some of the implicated
applications, photoswitching, and photomodulations will be outlined.

1.2.1. Molecular Motion

The fundamental molecular photomotion in azobenzenes is the geometrical
change that occurs on absorption of light. In cis-azobenzene, the phenyl rings
are twisted at 901 relative to the C–N=N–C plane (Naito et al., 1991; Uznanski
et al., 1991). Isomerization reduces the distance between the 4 and 4u positions
from 0.99 nm in the trans state to 0.55 nm in the cis state (Brown, 1966; Hampson
and Robertson, 1941; de Lange et al., 1939). This geometric change increases the
dipole moment: whereas the trans form has no dipole moment, the cis form has a
dipole moment of 3.1 D (Hartley, 1937). The free volume requirement of the cis is
larger than that of the trans (Naito et al., 1993), and it has been estimated that the
minimum free volume pocket required to allow isomerization to proceed via
the inversion pathway (Naito et al., 1991; Paik and Morawetz, 1972) is 0.12 nm3,
andB0.38 nm3 via the rotation pathway (Lamarre and Sung, 1983). The effects of
matrix free volume constraints on photochemical reactions in general have been
considered (Weiss et al., 1993). The geometrical changes in azobenzene are very
large, by molecular standards, and it is thus no surprise that isomerization
modifies a wide host of material properties.

This molecular displacement generates a nanoscale force, which has been
measured in single-molecule force spectroscopy experiments (Holland et al., 2003;
Hugel et al., 2002) and compared with theory (Neuert et al., 2005). In these
experiments, illumination causes contraction of an azobenzene polymer, showing
that each chromophore can exert pN molecular forces on demand. A pseudo-
rotaxane that can be reversibly threaded–dethreaded using light has been called an
‘‘artificial molecular-level machine’’(Balzani et al., 2001; Asakawa et al., 1999).
The ability to activate and power molecular-level devices using light is of course
attractive since it circumvents the limitations inherent to diffusion or wiring. The
fast response and lack of waste products in azo isomerization are also advanta-
geous. Coupling these molecular-scale motions to do useful work is of course the
next challenging step. Progress in this direction is evident from a wide variety of
molecular switches that have been synthesized. For example, an azo linking two
porphyrin rings enabled photocontrol of electron transfer (Tsuchiya, 1999). In
another example, dramatically different hydrogen-bonding networks (intermole-
cular and intramolecular) can be favored on the basis of the isomeric state of the
azo group linking two cyclic peptides (Steinem et al., 1999; Vollmer et al., 1999).

1.2.2. Photobiological Experiments

The molecular conformation change of the azo chromophore can be used to
switch the conformation and hence properties of larger molecular systems
to which it is attached. This is particularly interesting in the case of inclusion
within molecular-scale biological systems. The bridging of biology and physical
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chemistry is an ever-expanding research domain. It is no surprise that the clean
and unique azo photochemistry has been applied to switching biological systems
(Willner and Rubin, 1996). One of the earliest investigations of azobenzene in a
biological context involved embedding azobenzene molecules into a model
membrane system (Balasubramanian et al., 1975). On isomerization, the lamellae
were disrupted and rearranged, which also changed the enzymatic activity of
membrane-bound proteins. The catalytic activity of a cyclodextrin with a histidine
and azobenzene pendant was photocontrollable because the trans version of the
azo pendant can bind inside the cyclodextrin pocket, whereas the cis version
liberated the catalytic site (Lee and Ueno, 2001). Photoregulation of polypeptide
structure has been an active area of research (Ciardelli and Pieroni, 2001), with the
azobenzenes making significant contributions. Azo-modified poly (L-alanine)
(Sisido et al., 1991a,b), poly(L-glutamic acid) (Houben et al., 1983; Pieroni
et al., 1980), and poly(L-lysine) (Malcolm and Pieroni, 1990), among others,
have been prepared. Depending on the system, photoisomerization may cause no
change (Houben et al., 1983) or can induce a substantial conformational change,
including transitions from ordered chiral helix to disordered achiral chain (Fissi
et al., 1996; Yamamoto and Nishida, 1991; Montagnoli et al., 1983), changes in
the a-helix content, or even reversible a-helix to b-sheet conversions (Fissi et al.,
1987). Also, owing to the change in local electrostatic environment, the pKa of the
polypeptides can be controlled in these systems.

Covalent attachment of azobenzene units to enzymes can modify protein
activity by distorting the protein structure with isomerization. This was used to
control the enzyme activity of papain (Willner and Rubin, 1993; Willner et al.,
1991a) and the catalytic efficiency of lysozyme (Inada et al., 2005). A different
methodology is to immobilize the protein of interest inside a photoisomerizable
copolymer matrix, which was used to control a-chymotrypsin (Willner and Rubin,
1993; Willner et al., 1991b, 1993). The azobenzene need not be directly incorpo-
rated into an enzyme of interest. In one case, the activity of tyrosinase could be
modified by isomerization of small-molecule azo inhibitors (Komori et al., 2004).
The photoselective binding of short peptide fragments into enzymes can be used to
inhibit, thus control, activity (Harvey and Abell, 2000, 2001). Similarly, the binding
of an azopeptide with a monoclonal antibody was found to be photoreversible
(Harada et al., 1991). The photoresponse of azobenzene can thus be used to control
the availability of key biomolecules. In one case, NAD+ was modified with an
azobenzene group, and introduced into a mixture with an antibody that binds to
the trans form (Hohsaka et al., 1994). This binding makes NAD+ unavailable,
whereas irradiation of the solution with UV light induces the trans to cis
isomerization, and thereby liberates NAD+.

Bioengineering has more recently been broadened by expanding the
natural protein alphabet with artificial amino acids. This enables novel and
nonnatural protein sequences to be created, while still exploiting the highly
efficient natural synthesis machinery. Chiral azobenzene amino acids have been
synthesized and incorporated into protein sequences (Wang and Schultz, 2004).
The introduction of artificial photoactive residues opens the possibility of
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photocontrol of biological processes. For instance, Escherichia coli variants were
selectively evolved that would incorporate azobenzene amino acids into proteins,
which enabled photocontrol of protein binding in that organism (Bose et al.,
2006). For instance, photocontrol of the binding affinity of a transcription factor
to its promoter, allowed for, in essence, light control of gene expression in the
organism. In another case, a (negatively charged) hydrophilic azobenzene amino
acid was incorporated into a restriction enzyme, and enabled control of activity
with light (Nakayama et al., 2004, 2005). Specifically, the trans-azo residue was
positioned at the dimer interface, and disrupted association, whereas in the cis
state, the proteins could aggregate and exhibit normal biological activity. It has
also been suggested that the rapid switching of azobenzene could be used as a
‘‘molecular shuttle’’ for electron transduction in enzyme systems (Voinova and
Jonson, 2004). In effect, this would mean that light could be efficiently used to
alter behavior in yet another class of enzymes. Incorporation of azobenzene into
DNA is another interesting way to control biological systems. In one case, the
duplex of modified DNA could be reversibly switched (Asanuma et al., 2001),
since the trans-azobenzene intercalates between base pairs and helps bind the two
strands of the double helix together, whereas the cis-azobenzene disrupted the
duplex (Liang et al., 2003). By incorporating an azobenzene unit into the promoter
region of an otherwise normal DNA sequence, it was possible to photocontrol
gene expression (Liu et al., 2005). In this case, the trans versus cis states of the azo
unit have different interactions with the polymerase enzyme.

These experiments suggest an overall strategy to control biological systems
using light. A complex biochemical pathway can be controlled by photoregulating
the activity or availability of a key biomolecule. This allows one to turn a biological
process on and off at will using light. The use inside living organisms is obviously
more complicated, but one can reasonably easily apply these principles to control
biological processes in industrially relevant settings. The ability to quickly and
cleanly switch biological activity using a short light pulse may find application in
new microfluidic devices, which need to be able to address specific device regions
and may rely on natural molecular machinery to carry out certain tasks. Azoben-
zenes present unique opportunities in the biological sciences for studying complex
biological systems, in addition to controlling them. A bacteriorhodopsin analog
with a central azobenzene molecule, rather than the retinal, was prepared as a model
system for studying rhodopsin (Singh et al., 1996). As expected, the azobenzene
molecule did not interact as favorably with the protein host as strongly as the
natural retinal. Despite this, the azo molecules could be coupled into the protein (in
the absence of retinal) and led to significant shifts in the physicochemical properties
of the complex. Moreover, the azo molecule could be used as a probe of the inner
protein domain (sensing pH, for instance). A particularly elegant experiment
involved using azobenzenes to monitor protein folding (Bredenbeck et al., 2003;
Spörlein et al., 2002). Femtosecond two-dimensional infrared (2-D IR) spectroscopy
was used as a gauge of the distances between carbonyl groups in the peptide. An
azobenzene chromophore, incorporated inside the polypeptide chain, acted as the
photoswitch, initiating a conformational change, hence initiating protein folding, on
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demand. Simultaneous time-resolved measurements of the azo spectra allowed
determination of the folding dynamics. This unique measurement of protein-folding
behavior was possible because of the phototriggering nature of the azo unit.
Ultrafast laser pulse experiments are used to study a large number of chemical
reactions, providing detail not possible before. This technique is, however,
obviously limited to systems where the chemical events can be phototriggered. By
incorporating azobenzene units into new systems, one can generate a phototrigger-
able system from an otherwise photoinactive one. This strategy can thus be applied
to a wide range of problems in chemical dynamics, with biological systems being
obvious targets.

1.2.3. Photoorientation

Azobenzene chromophores can be oriented using polarized light (Yu and Ikeda,
2004; Ichimura, 2000) via a statistical selection process, described schematically in
Fig. 1.9. Azobenzenes preferentially absorb light polarized along their transition
dipole axis (long axis of the azomolecule). The probability of absorption varies as
cos2f, where f is the angle between the light polarization and the azo dipole axis.

E

(a) 

(b) 

E E

E

Figure 1.9. Statistical photoorientation of azomolecules. (a) The molecules

aligned along the polarization direction of the incident light absorb, isomerize,

and reorient. Those aligned perpendicular cannot absorb and remain fixed.

(b) Irradiation of an isotropic samples leads to accumulation of chromophores in

the perpendicular direction. Circularly polarized light restores isotropy.
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Thus, azos oriented along the polarization of the light will absorb, whereas those
oriented against the light polarization will not. For a given initial angular
distribution of chromophores, many will absorb, convert into the cis form and
then revert to the trans form with a new random direction. Those chromophores
that fall perpendicular to the light polarization will no longer isomerize and
reorient; hence, there is a net depletion of chromophores aligned with the light
polarization, with a concomitant increase in the population of chromophores
aligned perpendicular (i.e., orientation hole burning). This statistical reorientation
is fast and gives rise to strong birefringence (anisotropy in refractive index) and
dichroism (anisotropy in absorption spectrum) because of the large anisotropy
of the azo electronic system. The process is especially efficient because of the
mesogenlike cooperative motion that the azobenzene groups facilitate even in
amorphous samples below Tg (Wiesner et al., 1991). Since the process requires
cycling of the chromophores between the trans and cis states, the pseudo-stilbenes
have the fastest response.

The orientation due to polarized light is reversible. The direction can be
modified by using a new polarization angle for the irradiating light. Circularly
polarized light will randomize the chromophore orientations. It must be empha-
sized, however, that there is another preferential alignment direction during
irradiation: along the axis of the incoming light. It is unavoidable that chromo-
phores will efficiently build up aligned along the irradiation axis, but this is often
ignored in the literature, or characterized as ‘‘photobleaching’’ when in fact it is a
reversible photoalignment (albeit one that reduces the absorbance as viewed by
any photoprobe). Because unpolarized light can photoorient (along the axis of
illumination) (Han and Ichimura, 2001), even sunlight is suitable. The motion of
the sun through the sky over the course of a day can cause orientation at different
tilt angles (Ichimura and Han, 2000). This causes chromophores at different
depths to be oriented in different directions, which produces a net chiral helical
ordering in the film of a particular handedness (on the basis of the hemisphere in
which the experiment is performed). The implications of such results to the origin
of absolute chirality in biological systems are intriguing.

1.2.3.1. Birefringence. Irradiation with light polarized in the g-direction will
lead to net alignment of chromophores in the x-direction. As a result,
the refractive index probed in the x-direction, nx, will measure the azo long
axis, and will be larger than ny. Birefringence is the anisotropy in refractive index:
Dn=nx� ny. Photoalignment in azobenzene systems can achieve extremely high
values of Dn, up to 0.3–0.5 atB633 nm (Hagen and Bieringer, 2001; Natansohn et
al., 1994). Importantly, very high birefringence values can be obtained far outside
of the azo-absorption band, which means that the birefringence can be utilized/
measured without disturbing the chromophores. An in-plane isotropic state
(nx=ny) can be restored by irradiation with circularly polarized light, and a fully
isotropic state can be obtained by heating above the Tg.

The exact nature of the orientation can be rigorously quantified using
optical techniques. Using surface plasmon resonance spectroscopy or waveguide
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spectroscopy, the three orthogonal refractive indices in an oriented sample can be
measured (Tawa and Knoll, 2002). Stokes polarimetry can be used to fully
characterize the optical anisotropy, separating linear and circular components
(Hore et al., 2002). The anisotropy of the cis population during irradiation can
also be measured in some systems (Buffeteau et al., 2001; Sekkat et al., 1995b),
where it is found that, as with trans, there is an enrichment perpendicular to the
irradiation polarization. In some LC systems, however, it may occur that the cis
population preferentially aligns with the irradiating polarization (which may be
attributed to an optical Fréedericksz transition) (Hore et al., 2003).

The birefringence can be written and erased hundreds of thousands of times,
which is important technologically (Holme et al., 1996). Amorphous polymer
systems with relatively high Tg exhibit good temporal stability of any induced
orientation. Upon heating, some order will be lost, with full isotropy restored after
heating past Tg. A short spacer between the chromophore and the polymer
backbone slows the growth of birefringence yet promotes stability, owing to
hindered motion. Surprisingly, main-chain azos can achieve high levels of
birefringence, indicating relatively high polymer mobility (Wu et al., 2001b;
Xu et al., 2000; Lee et al., 1998). As might be expected, (nanosecond) pulsed
experiments lead to thermal effects, which enhance chromophore motion and
thereby induced greater birefringence at the same net dose compared with
continuous-wave (cw) experiments (Cimrová et al., 2002; Hildebrandt et al.,
1998). At very high pulsed fluence, the thermal effects were too great and erased
the induced birefringence.

The easily inscribed and erased birefringence has a number of unique
applications. Most readily, it can be used to create wave plates (Shi et al.,
1991a) and polarization filters, which can be used to separate right-handed from
left-handed circularly polarized light (Natansohn and Rochon, 1999). The strong
refractive index contrast, if patterned into a line, can serve as a channel waveguide
(Watanabe et al., 1996; Shi et al., 1991b). This offers the unique possibility of
optical devices that can be patterned, erased, and reused. In principle, these
photonic circuits could be altered during device operation, enabling optical
routing of optical signals (i.e., optical computing). The switching of orientational
order can thus be used as an all-optical switch (Shishido et al., 1997). By
illuminating an azo sample with a spatially varying light pattern, birefringence
gratings can also be formed (Eichler et al., 2001; Nikolova et al., 1996; Couture
and Lessard, 1988). These are phase gratings, as opposed to amplitude gratings,
and diffract light on the basis of spatial variation of the refractive index. This is the
essence of holography: two interfering coherent beams generate a spatially varying
light pattern, which is encoded into the material. Under illumination of the
material with one of the beams, the diffraction reproduces the other encoded
beam. In the case of liquid crystal samples, light induces a spatial pattern
of nematic and isotropic zones (which have different refractive indices).
These holographic phase grating can be rapidly formed, erased, and switched
(Yamamoto et al., 2001).
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1.2.3.2. Nonlinear Optics. The requirement for NLO response in any
material is an asymmetric (strictly, anharmonic) response of the electronic system.
Pseudo-stilbenes, which have push–pull substituents, have a strongly asymmetric
electron distribution, which makes them ideal NLO molecules (see, for instance,
Fig. 1.10). For a bulk NLO response, one requires an overall noncentrosymmetric
material. This requirement is achieved in many inorganic crystals. In organic
systems, the broken symmetry is typically obtained by applying an electric field at
a temperature sufficient to allow for the molecular dipoles to align with the field.
This process is called electric field poling and is accomplished using interdigitated
or flat electrodes or a sharp charged needle (or grid) held above a grounded sample
(called corona poling). The NLO response is typically quantified using second-
harmonic generation (SHG; the emission of light at double the frequency of the
incident beam), the electrooptic effect (change of refractive index on application of
an electric field), or wave-mixing experiments (where various frequencies of light
can be synthesized or enhanced). These also constitute the main applications of
NLO materials: they can be used to synthesize new frequencies of light, to
electrically switch a beam, or to allow two beams of light to interact and couple
(which can form the basis of an all-optical switch) (Eaton, 1991).
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Azo polymers have been shown to be excellent NLO materials (Yesodha et al.,
2004; Delaire and Nakatani, 2000; Dalton et al., 1995; Burland et al., 1994). In azo
systems, one has the additional advantage of using light to affect the chromo-
phores. Although photoalignment orients the chromophore axis, it does not select
out a preferred direction for the molecular dipole (thus, an equal number of dipoles
point ‘‘left’’ and ‘‘right’’). In fact, evidence suggests that dipoles in these systems
tend to orient antiparallel (H-aggregates) (Meng et al., 1996; Brown et al., 1995),
thereby canceling polar order. Nevertheless, the photoalignment can be used to
facilitate the electric poling, enabling it to be performed at room temperature and
with a small DC field (Jiang et al., 1996; Sekkat et al., 1995a; Blanchard and
Mitchell, 1993a,b). Furthermore, by using polarized light and its harmonic, a net
noncentrosymmetry can be obtained in an all-optical process (Zhong et al., 2001;
Nunzi et al., 1998). This occurs because the mixture of a primary beam and its
second harmonic creates a directional electric field in the material.

Another interesting approach for NLO uses dendrons (‘‘half-dendrimers’’)
with azo functionalities (Yokoyama et al., 2000). The dendritic architecture forces
all the chromophores within the dendron to align, which strongly enhances
the NLO response. The dendron had a first-order molecular hyperpolarizability
20 times larger than the monomer. With regard to applications, the azos have been
shown to function as electro-optical switches (Yamane et al., 1999) and exhibit
photorefraction (Iftime et al., 2002; Steenwinckel et al., 2001; Barrett et al., 1998;
Ho et al., 1996), an NLO effect where photoconductivity permits light to establish
a space charge grating, whose associated index grating refracts a probe light beam.

1.2.4. Domain Motion

The orientation and reorientation of LC domains has already been outlined. The
azo chromophores act as mesogens and their photoalignment becomes transferred
to the LC host. A very small azo content (a few mol% [Ikeda et al., 1990]) can lead
to orientational control of LC domains. This is an excellent example of
amplification of the azomolecular motion. The phase of a liquid crystal can also
be switched with light. Irradiation produces cis isomers, which are poor mesogens
and destabilize the nematic phase, thereby inducing a phase transition to the
isotropic state. There are comparatively few examples of phototriggered increases
in LC ordering. In one case, a nanoscale phase separation of the cis isomers led to
a net increase in the order parameter of the LC phase (Prasad and Nair, 2001). In
another system, a chiral azo was found to induce a cholesteric phase when it was in
the cis state (Ruslim and Ichimura, 2001).

With LC (Nikolova et al., 1997) or preoriented amorphous samples (Ivanov
et al., 2000), one can photoinduce a chiral domain structure. Incident circularly
polarized light becomes elliptically polarized because of the first oriented layer.
This ellipse subsequently reorients deeper chromophores, which in turn modify the
ellipticity of the light. This reorientation continues throughout the film depth.
Overall, a chiral ordering of the chromophore domains is established (Nikolova
et al., 2000). Remarkably, one can switch between a right- and left-handed
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supramolecular helix at will, by changing the incident light handedness. There are
many other examples of photocontrol of supramolecular order. The pitch of a
cholesteric LC can be modified by isomerization (Sackmann, 1971). Biomacro-
molecular variants abound (Willner and Rubin, 1996). Azo-modified polypeptides
can be photoswitched between ordered states (a-helix or b-sheet) and a random
coil (Everlof and Jaycox, 2000; Fissi et al., 1996; Yamamoto and Nishida, 1991).
The duplex of modified DNA can be reversibly switched (Asanuma et al., 2001),
and the catalytic activity of histidine can be controlled (Lee and Ueno, 2001).

Photoisomerization can also affect self-assembly behavior at the domain level.
On irradiation, one can induce a phase change (Aoki et al., 2000), a solubility
change (Arai and Kawabata, 1995; Yamamoto et al., 1990), crystallization
(Ebralidze and Mumladze, 1990), or even reversal of phase separation (Effing
and Kwak, 1995). The critical micelle concentration (cmc) and surface activity can
also be modified (Yang et al., 1995). In an amphiphilic polypeptide system, self-
assembled micelles were formed in the dark and could be disaggregated with light
(Higuchi et al., 1994). When allowed to assemble as a transmembrane structure,
the aggregate could be reversibly formed and destroyed using light, which allowed
for reversible photoswitching of ion transport (Higuchi et al., 1995a). Related
experiments on methacrylates (Chen et al., 1997a; Angiolini et al., 1995) and
polypeptides (Sisido et al., 1991b) showed that a polymer’s chiral helix could be
reversibly suppressed on irradiation. In a series of polyisocyanate polymers, it
could be selected whether irradiation would suppress or increase chirality (Müller
and Zentel, 1996; Maxein and Zentel, 1995).

1.2.5. Macroscopic Motion

It is interesting to study whether the azobenzene molecular conformational
rearrangements can result in changes to bulk phenomena, or even to macroscopic
motion. The first consideration is whether the material expands to an appreciable
extent. In monolayers, it is well established that the larger molecular size of the cis
isomer leads to a corresponding lateral expansion (Higuchi et al., 1995b), which
can modify other bulk properties. For instance, this allows photomodulation of a
monolayer’s water contact angle (Siewierski et al., 1996) or surface potential
(Stiller et al., 1999). Using fluorinated azo polymer, good photocontrol (Feng
et al., 2001) and photopatterning (Moller et al., 1998) of wettability has been
demonstrated. A monolayer of azo-modified calixarene, when irradiated with a
light gradient, produced a gradient in surface energy sufficient to move a
macroscopic oil droplet (Ichimura et al., 2000), suggesting possible applications
in microfluidics. Modest photoinduced contact angle changes for thin polymer
films have also been reported (Sarkar et al., 2001). Recently an azobenzene
copolymer assembled into polyelectrolyte multilayer showed a modest 21 change
in contact angle with UV light irradiation. However, when the same copolymer
was assembled onto a patterned substrate, the change in contact angle upon
irradiation was enhanced to 701 (Jiang et al., 2005). It is well established that
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surface roughness plays a role in contact angle and many systems can be optimized
to give rise to a large change in surface properties.

In layered inorganic systems with intercalated azobenzenes, reversible photo-
changes in the basal spacing (on the order of 4%) can be achieved (Fujita et al.,
1998, 2001). In polymer films, there is some evidence that the film thickness
increases, as measured by ellipsometry (Shi et al., 1991b) (the refractive index
certainly changes [Ivanov et al., 1995], but this is not an unambiguous demonstra-
tion of expansion–contraction). Experiments that show that external applied
pressure tends to hinder photoisomerization (Kleideiter et al., 2000) are
related. Photocontraction for semicrystalline main-chain azos has been measured
(Eisenbach, 1980b; Agolini and Gay, 1970). This photomechanical response
presumably occurs because of the shortening of the polymer chains upon
trans-cis conversion. However, photoexpansion would seem to be contradicted
by positron lifetime experiments that suggest no change in microscopic free
volume cavity size during irradiation (Algers et al., 2004). More conclusive
experiments are in order.

The most convincing demonstration of macroscopic motion due to azo
isomerization is the mechanical bending and unbending of a free-standing
polymer film (Ikeda et al., 2003; Yu et al., 2003). The macroscopic bending
direction may be selected either with polarized light or by aligning the chromo-
phores with rubbing. Bending occurs in these relatively thick films because the free
surface (which absorbs light) contracts, whereas the interior of the film (which is
not irradiated owing to the strong absorption of the upper part of the film) does
not contract. Because the direction of bending can be controlled with polarized
light, the materials enable full directional photomechanical control (Yu et al.,
2005). This photomechanical deformation has also been used to drive macroscopic
motion of a floating film (Camacho-Lopez et al., 2004). That these materials
contract (rather than expand) appears again to be related to the main-chain azo
groups and may also be related to the LC nature of the cross-linked gels. For a
thin film floating on a water surface, a contraction in the direction of polarized
light was seen for LC materials, whereas an expansion was seen for amorphous
materials (Bublitz et al., 2000). A related amplification of azo motion to
macroscopic motion is the photoinduced bending of a microcantilever coated
with an azobenzene monolayer (Ji et al., 2004). One can also invert the coupling of
mechanical and optical effects: by stretching an elastomeric azo film containing a
grating, one can affect its wavelength-selection properties and orient chromo-
phores (Bai and Zhao, 2001).

1.2.6. Other Applications of Azobenzenes

1.2.6.1. Photoswitches. As already pointed out, the azo isomerization can
be used to photoswitch a wide variety of other properties (at numerous size scales).
In addition to the optical changes already described, it is worth noting that the
transient change in material refractive index (owing to the different n of cis and
trans) can itself act as a photoswitch (Barley et al., 1991). The azo photochromism
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has even been suggested as a possible optical neural network element (Sumaru
et al., 1999). Binding and transport properties can also be photoswitched (Weh
et al., 1998; Anzai and Osa, 1994). In some systems the redox potential and ionic
conductivity can be switched with light (Willner and Willner, 1997). Crown ethers
(Zawisza et al., 1999; Tokuhisa et al., 1994) and calixarenes (Reynier et al., 1998)
functionalized with azobenzene can be used as reversible ion-binding systems.
Thus, ion transport can be photoregulated. In other cases, the transport properties
can be photocontrolled not via binding but on the basis of changes in pore sizes
(Sata et al., 2000; Abraham and Purushothaman, 1998; Kano et al., 1980). In a
particularly elegant example, the size of nanochannels could be modified by
irradiating azo ligands that decorate the channel walls (Liu et al., 2004). Azo-
derivatized gramicidin ion channels represent a unique case where ion transport
can be photocontrolled by the optical manipulation of a biomolecule (Lien et al.,
1996). In addition to obvious applications in controlled transport, this offers the
possibility of studying cells by controlling the timing of ion exchange processes.
Photoinduced catalysis is also possible, for instance, using molecules where only
the cis form is catalytically active (Wuerthner and Rebek, 1995). Extension of the
molecular imprinting technique to azo polymers allows for photoswitching of
binding activity with respect to the imprinted molecule (Minoura et al., 2004).

1.2.6.2. Photoprobes. The properties of an azo chromophore (spectrum,
isomerization kinetics, etc.) depend strongly on the local environment. This
enables the possibility of using the chromophore as a molecular sensing element:
a photoprobe. For instance, it has been found that many azo properties depend on
local H+ concentration, to the extent that the azo can in fact be used as a pH
meter (Uznanski and Pecherz, 2002; Mermut and Barrett, 2001). As mentioned
earlier, the isomerization kinetics can also be used as a probe of free volume
(Naito et al., 1993; Lamarre and Sung, 1983), local aggregation (Norman and
Barrett, 2002), or phase transitions. The azo molecule is small and exhibits clean
photochemistry, which makes it more versatile and robust than many other
photoprobes. The rate of isomerization is also remarkably insensitive to tempera-
ture (Yamamoto, 1986), yet sensitive to local solvent conditions (Li et al., 2006;
Norman and Barrett, 2002). This is an area of research that deserves considerably
more attention.

In a more sophisticated example, azo chromophores were used to monitor
protein folding (Bredenbeck et al., 2003; Spörlein et al., 2002). Specifically,
femtosecond 2-D IR spectroscopy was used to monitor the distances between
carbonyl groups in the peptide. An azo chromophore, incorporated inside the
polypeptide chain, was used as a photoswitch to initiate a conformational change,
hence initiate protein folding, on demand. Combined with time-resolved monitor-
ing of the azo spectrum, this allows the deconvolution of folding dynamics. Pump-
probe ultrafast laser pulse experiments are being used to study many different
chemical reactions, but are obviously limited to reactions that can be triggered by
light. Incorporating azobenzene into the experiment allows a wider range of
reactions to be phototriggered.
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1.2.6.3. Optical Data Storage. The azos have been investigated as optical
storage media for some time. Early proofs of principle were on Langmuir–
Blodgett films, using photochromism (Liu et al., 1990) or birefringence (Dhana-
balan et al., 1999). Increasingly, amorphous polymer systems are being recognized
as promising materials. In these easily processed systems, the birefringence is
strong, stable, and switchable, making them ideal for optical memories. A single
domain could encode one bit by either being isotropic or birefringent, a difference
that is easily probed optically. The Dn values are large enough, in fact, that a
gray-level algorithm could be used, where each domain stores more than one
bit of data. On the negative side, the photoalignment generated in the direction of
the read–write beam leads to an effective loss of material performance with time.
Full anisotropy could be restored with heat, however (which can be local and
photoinduced, with appropriate device setup). The feasibility of storing B30GB
of data on a single layer of a removable disk using this gray-level approach has
been demonstrated (Hagen and Bieringer, 2001).

Even the fastest photoinduced birefringence in azo systems requires milli-
seconds and is slow compared with most computer timescales. However, optical
data storage is amenable to gray-level read–write (Sabi et al., 2001) and to storing–
retrieving full 2-D ‘‘pages’’ of data at a time. In principle, azo systems could
achieve high data storage and retrieval speeds. The full 3-D volume of a material
can be used by encoding many layers of 2-D data (pages) one on top of the other
(Kawata and Kawata, 2000; Ishikawa et al., 1998). This is accomplished by
moving the optical focal plane through the material.

An intriguing possibility for high density storage is to use angular multi-
plexing (Hagen and Bieringer, 2001). By storing multiple superimposed
holograms in a single material, the data density is increased dramatically, and
the whole 3-D volume of the material is exploited (Ramanujam et al., 2001).
Volume-phase holograms in azo systems can have diffraction efficiencies
greater than 90% (Zilker et al., 1998), making data readout robust. The hologram
is encoded by interfering a reference beam and a writing beam inside the
sample volume, at a particular angle. The write beam, having passed through a
spatial light modulator (SLM), has a pattern corresponding to the data, which is
then holographically encoded in the sample. The entire page of data is written
at once. By selecting different angles, new pages of data can be written. To
readout a page, the azo sample is set at the correct angle and illuminated with the
reference beam. The resulting diffraction pattern is imaged on a charge-coupled
device (CCD) array, which measures the encoded beam pattern (data). The
volume of data and transmission rate is clearly large: projections of B1000GB
in a single disk have been made. Since the entire hologram image is stored
throughout the material, the technique is fairly insensitive to dust, scratches, and
pinpoint defects.

The use of azo-substituted peptide oligomers appears to enable control of the
order, hence optimization for holographic applications (Berg et al., 1996). Optical
memories would be considerably enhanced by using two-photon processes. This
allows the addressable volume to be smaller and better defined, while reducing
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cross-talk between encoded pages. Some azo chromophores exhibit ‘‘biphotonic’’
phenomena, which could be employed to enhance optical data storage.

1.2.6.4. Surface Mass Transport. In 1995, a surprising and unprecedented
optical effect was discovered in polymer thin films containing the azo chromo-
phore Disperse Red 1 (DR1). The Natansohn–Rochon (Rochon et al., 1995)
research team and the Tripathy–Kumar collaboration (Kim et al., 1995) simulta-
neously and independently discovered a large-scale surface mass transport when
the films were irradiated with a light interference pattern. In a typical experiment,
two coherent laser beams, with a wavelength in the azo-absorption band, are
intersected at the sample surface. The sample usually consists of a thin spin-cast
film (10–1000 nm) of an amorphous azo polymer on a transparent substrate. The
sinusoidal light interference pattern at the sample surface leads to a sinusoidal
surface patterning, that is, a surface relief grating (SRG). These gratings were
found to be extremely large, up to hundreds of nanometers, as confirmed by
atomic force microscopy (AFM). The SRGs diffract very efficiently, and in
retrospect, it is clear that many reports of large diffraction efficiency before
1995, attributed to birefringence, were in fact due to surface gratings. The process
occurs readily at room temperature (well below the Tg of the amorphous polymers
used) with moderate irradiation (1–100mWcm�2) over seconds to minutes. The
phenomenon is a reversible mass transport, not irreversible material ablation,
since a flat film with the original thickness is recovered upon heating above Tg.
Critically, it requires the presence and isomerization of azobenzene chromo-
phores. Other absorbing but nonisomerizing chromophores do not produce
SRGs. Many other systems can exhibit optical surface patterning (Yamaki et
al., 2000), but the amplitude of the modification is much smaller, does not involve
mass transport, and usually requires additional processing steps. The all-optical
patterning unique to azobenzenes has been studied intensively since its discovery,
yet there remains controversy regarding the mechanism. The competing inter-
pretations are evaluated in Chapter 4, where they are discussed at length. Many
reviews of the remarkable body of experimental results are available (Natansohn
and Rochon, 2002; Delaire and Nakatani, 2000; Yager and Barrett, 2001;
Viswanathan et al., 1999).
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